Computing discrete Morse complexes from simplicial complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect discrete Morse functions on 2-complexes

A bst r ac t This paper is focused on the study of perfect discrete Morse functions on a 2-simplicial complex. These are those discrete Morse functions such that the number of critical i-simplices coincides with the i-th Betti number of the complex. In particular, we establish conditions under which a 2-complex admits a perfect discrete Morse function and conversely, we get topological properti...

متن کامل

Discrete Morse Theory for free chain complexes

We extend the combinatorial Morse complex construction to the arbitrary free chain complexes, and give a short, self-contained, and elementary proof of the quasi-isomorphism between the original chain complex and its Morse

متن کامل

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

Discrete Morse Theoretic Algorithms for Computing Homology of Complexes and Maps

We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) continuous function, especially when the evaluation of that function is subject to measurement err...

متن کامل

Saturated simplicial complexes

Among shellable complexes a certain class has maximal modular homology, and these are the so-called saturated complexes. We extend the notion of saturation to arbitrary pure complexes and give a survey of their properties. It is shown that saturated complexes can be characterized via the p -rank of incidence matrices and via the structure of links. We show that rank-selected subcomplexes of sat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphical Models

سال: 2019

ISSN: 1524-0703

DOI: 10.1016/j.gmod.2019.101023